The Formation of Regions of Separated Flow on Wing Surfaces Part I Low - Speed Tests on a Two - Dimensional Unswept Wing
نویسنده
چکیده
Tests of a two-dimensional straight wing with a 10 per cent thick RAE 101 section have been made in a low-speed wind tunnel to check the validity of a criterion suggested by Owen and Klanfer for the type of bubble which will be formed when a laminar boundary layer separates from the surface of an aerofoil. The results confirm this hypothesis and show that if the boundary-layer Reynolds number based on displacement thickness at separation, calculated from an observed pressure distribution, is greater than 450 a short bubble is formed, and for (R 6 1)s less than 400 a long bubbl : is formed. For values of (R 6 1)s within the range 400 to 450 it is uncertain which type of bubble will occur. A method is given, based on these results, for predicting the type of bubble formed on a two-dimensional unswept wing of arbitary section shape for a given incidence and Reynolds number. A brief discussion of the physical structure of bubbles is given, and the more important problems yet to be solved are indicated. A hypothesis is put forward to explain the phenomenon of the 'leading-edge stall ' of moderately thin aerofoil sections, and some remarks are added on the scale effect on the maximum lift attained by aerofoils which experience this type of stall. 1. Introduction.-Aerofoil sections may be divided into three categories depending on the type of stall: (a) Trailing-edge stall, with the separation point of the turbulent boundary layer moving forward from the trailing edge as the incidence increases (b) Leading-edge stall, caused by an abrupt separation of the flow near the leading edge without subsequent reattachment. (c) Thin-aerofoil stall with laminar separation near the leading edge and turbulent re-attachment at a point which moves progressively rearward with increasing incidence.
منابع مشابه
Flow Field Study Over the Wing of a Fighter-Type Aircraft Model
An extensive experimental investigation to study the flow structure over the wing of a fighter type configuration model has been conducted. The model used for this study was similar to the High Alpha Research Vehicle (HARV) that has been used in various European research centers for studying its force and moment characteristics. Tests were conducted at two subsonic speeds and at low to moderate...
متن کاملParametric Study of Movement Path in Two-dimensional Wing Flow Separation: Experimental Investigation
The aim of this experimental study is two-dimensional investigation of cargo behavior after separation which is carried out in the subsonic wind tunnel. Given that the real separation occurs in three-dimension, the results of this study may be widely used in numerical aerodynamic studies for verification of new computational methods and they can be used as the reference results in this area. So...
متن کاملEffect of Wing Sweep Angle on the Vortex Interaction of a Tail-Wing Configuration
The goal of this investigation is to study the effect of wing sweep angle on the horizontal wing-body- tail configurations in subsonic flow. For this purpose, a series of wind tunnel tests were conducted on a model having a moveable horizontal tail and a wing planform with different sweep angles. Tests were performed at different tail deflection angles. Static surface pressure distribution over...
متن کاملDetermination of Dynamic Instability Speed of an Unsweep Wing in Subsonic Flow Including Compressibility Effects
In this paper, the equation of motion of an elastic 2 DoF wing model has been derived using Lagranges method. The aerodynamic loads on the wing were calculated via the Strip-Theory and the effect of compressibility was included. Wing deflections due to bending and twist motions were determined using the Assume-Mode method. The aeroelastic equations were solved numerically using the V-g method. ...
متن کاملDetermination of Dynamic Instability Speed of an Unsweep Wing in Subsonic Flow Including Compressibility Effects
In this paper, the equation of motion of an elastic 2 DoF wing model has been derived using Lagrange's method. The aerodynamic loads on the wing were calculated via the Strip-Theory and the effect of compressibility was included. Wing deflections due to bending and twist motions were determined using the Assume-Mode method. The aeroelastic equations were solved numerically using the V-g method....
متن کامل